伺服式液位計一直被廣泛地用于儲罐液位的高度測量,因為它是一種多功能儀表,既可以測量液位也可以測量界面、密度和罐底等參數。
伺服式液位計基于浮力平衡的原理,由微伺服電動機驅動體積較小的浮子,能地測出液位等參數。如圖1所示,浮子用測量鋼絲懸掛在儀表外殼內,而測量鋼絲纏繞在精密加工過的外輪鼓上;外磁鐵被固定在外輪鼓內,并與固定在內輪鼓的內磁鐵耦合在一起。
當液位計工作時,浮子作用于細鋼絲上的重力在外輪鼓的磁鐵上產生力矩,從而引起磁通量的變化。輪鼓組件間的磁通量變化導致內磁鐵上的電磁傳感器(霍爾元件)的輸出電壓信號發生變化。其電壓值與儲存于CPU中的參考電壓相比較。當浮子的位置平衡時,其差值為零。當被測介質液位變化時,使得浮子浮力發生改變。其結果是磁耦力矩被改變,使得帶有溫度補償的霍爾元件的輸出電壓發生變化。該電壓值與CPU中的參考電壓的差值驅動伺服電動機轉動,調整浮子上下移動重新達到平衡點。整個系統構成了一個閉環反饋回路(如圖1所示),其度可達±0.7mm,而且,其自身帶有的掛料補償功能,能夠補償由于鋼絲或浮子上附著被測介質導致的鋼絲張力的改變。
圖1 液位計系統構成
測量界面的原理與伺服式液位計基本相同,即根據原油與水兩種介質密度的不同導致所受浮力的不同而進行的界面測量。
當今,世界自動化儀表行業有很多種儀表可以進行界面測量,而為什么在油田的油水界面測量方面又幾乎是一個空白呢?這主要是由于這一場合不同于其他界面測量,工藝條件極其復雜。
原油從油井里被打出來后,經過加熱,送到采油站進行計量,再經過中轉站進行分離后進入聯合站。在聯合站,首先經過計量、加熱,而后將原油送至一級沉降罐(在一級沉降罐內原油一般常年保持在60℃左右),經過沉降分離送至中間罐,然后經過脫水泵脫水,再經過二次加熱進入二級沉降罐(在二級沉降罐內原油一般常年保持在80℃左右),zui后送到成品罐,需要進行油水界面測量的是一級沉降罐和二級沉降罐。一級沉降罐和二級沉降罐的罐高一般在13m左右,罐底設有一個排水孔,罐上部大約在11m左右的位置設有一個溢流孔,原油進料口一般從底部伸到罐的中部,大約在7m左右的位置。(如圖2所示)。當原油從7m左右的位置進入到罐中時,由于破乳劑及重力和浮力等因素的影響,密度較小的原油會向上升,密度較大的水會向下沉降,從理論上講,經過一定時間的沉降可以得到一個清晰的原油與水的分界面。
圖2 油水界面
但是在實際應用中,現場工況要復雜得多。由于不同產地的原油密度都不盡相同,再加上進料帶來的擾動、破乳劑和沉降時間等諸多因素,從而導致了在原油層與水層中間存在著一個厚薄不一、密度梯度不定的過渡層,習慣上稱之為乳化層。在這一乳化層中存在著水包油(W/O)、油包水(O/W),甚至水/油/水(W/O/W)或油/水/油(O/W/O)分層等更為復雜的體系,正是由于存在了這一如此復雜的乳化層,使得絕大多數界面儀在遇到這種工況時無法測量,而伺服式液位計能夠從多界面測量儀表中脫穎而出,成功地應用于這一惡劣的工況,正是由于它*的原理,以及先進的自我維護功能。
伺服式液位計在測量油水界面時,也是基于浮力平衡的基本原理,與測量液位不同的是,在測量界面時需要首先在表里輸入“上密度"和“中密度"兩個值,這兩個值是根據理論值以及實際應用經驗相結合得出的。從理論上講,原油的密度在0.88g/cm3~0.92g/cm3左右,水的密度是一個常數,為1g/cm3,但在實際應用中即使是zui上層的原油也會含少量的水,同樣,zui下層的水也會含少量的油,所以上層原油的密度要大于實際值,而下層水的密度在0.99g/cm3左右。在理想工況下,界面非常清晰,此時浮子處于兩層之間(如圖3所示),鋼絲所受張力為:
T=W-(V-Vb)×ρ1+Vβ×ρ2
式中:T——鋼絲張力;
W——浮子重力;
V——浮子體積;
Vb——浮子平衡時浸入的下部體積;
ρ1——上密度;
ρ2——中密度。
其中,W、V和Vβ均刻在浮子上為常數。